Contaminants that may be present in source water include:

- Pesticides and herbicides, which may come from a variety of sources such as agriculture, industrial waste, and household use.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring in the environment or result from human activity.
- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, municipal wastewater discharges, and animal or human sewage.
- Radionuclides, such as radon and uranium, which can be naturally-occurring or result from human activity.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which can be from industrial processes, oil and gas production, and mining activities.
- Other contaminants, such as asbestos and lead, which can be naturally-occurring or result from human activity.

In order to ensure that the water is safe to drink, the Surface Water Treatment Rule and the Disinfectants and Disinfection By-products Rule set standards for the treatment of water to remove or reduce these contaminants. The presence of these contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency’s Safe Drinking Water Hotline (800-426-4791).

While drinking water meets EPA’s standards for arsenic, it does contain low levels of arsenic. EPA continues to research the health effects of low levels of arsenic, and it is important to understand the current understanding of arsenic’s possible health effects against the costs of removing arsenic from drinking water.

While your drinking water meets EPA’s standards for nitrate, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.

Crypotosporidium and Giardia are parasites found in surface water throughout the U.S. Monitoring of our source water (before treatment) at Forest Park Water (FPW) indicated the presence of Cryptosporidium in 6 out of 12 samples collected. Giardia was detected in 7 out of 12 samples collected. FPW treatment processes are designed to remove or inactivate Cryptosporidium and Giardia cysts with a high level of certainty. Current available test methods do not allow us to determine if the organisms are dead or if they are capable of causing disease. Symptoms of infection include nausea, diarrhea, and abdominal cramps. People, including children, are at risk of developing cryptosporidiosis or giardiasis. Symptoms usually last 1-2 weeks, but can last longer for some people. More information about Cryptosporidium and Giardia can be found at www.epa.gov/safewater/lead.

Lead in drinking water is primarily from materials and components associated with service lines and homes plumbing. North Penn Water Authority is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at www.epa.gov/safewater/lead.
Perfluorinated Compounds (PFCs)
- Perfluorooctanesulfonic acid (PFOS)
- Perfluorononanoic acid (PFNA)
- Perfluorobutanesulfonic acid (PFBS)
- Perfluoroheptanoic acid (PFHpA)
- Perfluorohexanesulfonic acid (PFHxS)

Inorganic Chemicals (IOCs)
- Beryllium
- Cyanide
- Nickel
- Sodium
- Tellurium

Californ Bacteria
- E. Coli
- Total Coliform Bacteria

Volatile Organic Chemicals (VOCs)
- 1,1-Trichloroethane
- 1,2-Dichloroethane
- Chlorobenzene
- cis-1,2-Dichloroethylene
- Chloromethane
- Trichloroethylene
- Benzene
- Carbon tetrachloride
- Ethylbenzene
- Vinyl Chloride
- Styrene
- Xylenes, total

Synthetic Organic Chemicals (SOCs)
- 1,2-Dibromo-3-chloropropane
- Dalapon
- Ethylene dibromide
- Heptachlor
- PCBs
- Alachlor
- Chlorobenzene
- Ethylbenzene
- Vinyl Chloride
- Methoxychlor

HOW NPWA IS PROTECING THE WATER YOU DRINK

In 2011, NPWA became the first water utility in Pennsylvania to join American Water Works Association’s (AWWA) Distribution System Optimization Program. This program is part of NWPA’s Partnership for Safe Water whose mission is to identify opportunities for improvement in system operations and to empower system operators with knowledge to recognize and apply procedures that result in water quality and system reliability improvements. NPWA’s participation in the volunteer program demonstrates our commitment to providing the best quality water to our customers.

In 2009, NPWA’s Wellhead Protection (WHP) Program was approved by the PA DEP. The Authority’s WHP Program meets the requirements for a local WHP Program in accordance with the Pennsylvania Safe Drinking Water Regulations. The WHP Program provides valuable information to the Authority such as: identifying the protection zone around each well, identifying potential sources of contamination for each well, identifying the land areas around our wells, and the underground geologic layers that are within the pumping zones of influence. This information will greatly assist the Authority in dealing with emergency response in case of a hazardous spill event that could threaten the well, so that remedial measures could be put in place. Also, implementation of contingency planning could involve revisions to local land use practices, if necessary, to protect the integrity of the groundwater supply.

FOREST PARK WATER

Forest Park is a state-of-the-art water treatment facility that combines conventional treatment processes with advanced techniques, which include ozone disinfection and membrane filtration. Membrane filtration is a leading-edge technology capable of consistently producing very high quality water and ensures that the plant can effectively meet the more stringent federal and state water quality requirements that will be required in the near future. The combination of traditional and innovative water treatment allows Forest Park to produce the safest, highest quality water possible. In 2016, for the 9th consecutive year, Forest Park Water received the prestigious Area Wide Optimization Program (AWOP) Award presented by the PA DEP. This award recognizes outstanding efforts toward optimizing turbidity removal performance. AWOP is a national filter plant optimization effort among 22 states, the EPA, and the Association of State Drinking Water Administrators. The AWOP Award and Forest Park Water’s ongoing participation in the “Partnership for Safe Water,” a voluntary program administered by the American Water Works Association, demonstrates Forest Park Water’s continuing commitment to operational excellence.

PHONE: 215-855-3617 • www.npwa.org
Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant that is allowed in drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs do not change frequently. Some of our data is from prior years in accordance with the Safe Drinking Water Act standards.

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. When MCLs are exceeded, it may result in an increased risk of certain types of cancer and other serious health effects.

Action Level (AL): The concentration of a contaminant which, if exceeded, triggers additional information and requirements to which a water system must follow.

In the following tables you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms, we’ve provided the following definitions:

DEFINITIONS

- **ppb:** parts per billion, or micrograms per liter (μg/L)
- **ppm:** parts per million, or milligrams per liter (mg/L)
- **N/A:** Not Applicable
- **WQI:** Water Quality Index

In 2016, approximately 85% of the water supplied to our customers was treated surface water from the Forest Park Water Treatment Plant, in Chalfont, Pennsylvania. At times throughout the year, water is pumped from the Delaware River at Point Pleasant and diverted into the Forest Park Water Treatment Plant, in Chalfont. The source of water that is treated at Forest Park Water is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Township. It flows through the borough of Sellersville, on-lot septic systems and gas stations. Non-point sources of pollution from auto repair shops, wastewater treatment plants, boating, livestock farming, and industrial parks.

SOURCES OF WATER

In 2003, a Source Water Assessment of the North Branch Neshaminy Creek Intake, which supplies the Forest Park Water Treatment Plant, was completed and prepared by Spotts, Steven & McCoy, Inc. for the PA DEP. This Assessment found that the North Branch Neshaminy Creek is potentially most susceptible to point sources of pollution from auto repair shops, wastewater treatment plants, dining outlets, or toxic spills and gas stations. Nonpoint sources of pollution include: livestock farming and beekeeping on farms in the area, urban development, livestock farming, and industrial parks. The most common sources of pollution are related to accidental release of a variety of materials along transportation corridors and high traffic areas from large landfills. The PA DEP’s Source Water Assessment found that the river has the capability to treat a wide array of contaminates and removes any negative impacts from such sources. Regular and frequent monitoring of the water supply allows us to identify any concerns or remediate any problems in a timely manner. Contingency plans and emergency response plans are in place to deal with any release of contaminants or accidental occurrences that could compromise the integrity of your drinking water supply.

PEOPLE WITH SPECIAL HEALTH CONCERNS

Some people may be more vulnerable to contamination in drinking water than the general population. Immune-compromised persons such as persons with HIV/AIDS or other immune system disorders, persons with underlying chemotherapy, cancer patients who have undergone organ transplants, persons with HIV/AIDS in other various systemic disorders, very elderly, and infants can be particularly at risk from infections. Those people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to reduce the risk of infection by Cryptosporidium and other microbial contaminates can be obtained from the Safe Drinking Water hotline (800-426-4791).

NELA TURAL DRINKING WATER QUALITY REPORT 2017

North Penn Water Authority (NPWA) is pleased to present to you its 2017 Annual Drinking Water Quality Report. The brochure is a snapshot of last year’s water quality. It includes a directory of where your water comes from, what it contains, and how it compares to Environmental Protection Agency (EPA) and Pennsylvania Department of Environmental Protection (PADEP) state standards. We are committed to providing you with information about the sources of water that are available to us.

The remaining 15% of water came from 17 groundwater supply wells that NPWA operates. These wells are located throughout our service territory, in Bucks and Montgomery Counties. The water from these wells is chlorinated before it is delivered to our customers’ homes.

SOURCES OF WATER

In 2014, approximately 15% of the water that NPWA delivered to its customers was treated surface water from the Forest Park Water Treatment Plant, in Chalfont, Pennsylvania. At times throughout the year, water is pumped from the Delaware River at Point Pleasant and diverted into the Forest Park Water Treatment Plant, in Chalfont. The source of water that is treated at Forest Park Water is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Township. It flows through the borough of Sellersville, on-lot septic systems and gas stations. Non-point sources of pollution from auto repair shops, wastewater treatment plants, boating, livestock farming, and industrial parks.

Water System Information

-North Penn Water Authority (NPWA) is pleased to present to you its 2017 Annual Drinking Water Quality Report. The brochure is a snapshot of last year’s water quality. It includes a directory of where your water comes from, what it contains, and how it compares to Environmental Protection Agency (EPA) and Pennsylvania Department of Environmental Protection (PADEP) state standards. We are committed to providing you with information about the sources of water that are available to us.

Definitions

-NPWA routinely monitors for contaminants in your drinking water according to federal Safe Drinking Water Act standards. The date has been noted on the sampling results table.

SOURCE WA TER ASSESSMENT

-N/A: Not Applicable

PEOPLE WITH SPECIAL HEALTH CONCERNS

-Sources of Water:

-In 2016, approximately 85% of the water supplied to our customers was treated surface water from the Forest Park Water Treatment Plant, in Chalfont, Pennsylvania. At times throughout the year, water is pumped from the Delaware River at Point Pleasant and diverted into the Forest Park Water Treatment Plant, in Chalfont. The source of water that is treated at Forest Park Water is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Township. It flows through the borough of Sellersville, on-lot septic systems and gas stations. Non-point sources of pollution from auto repair shops, wastewater treatment plants, boating, livestock farming, and industrial parks.

-In 2016, approximately 85% of the water supplied to our customers was treated surface water from the Forest Park Water Treatment Plant, in Chalfont, Pennsylvania. At times throughout the year, water is pumped from the Delaware River at Point Pleasant and diverted into the Forest Park Water Treatment Plant, in Chalfont. The source of water that is treated at Forest Park Water is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Township. It flows through the borough of Sellersville, on-lot septic systems and gas stations. Non-point sources of pollution from auto repair shops, wastewater treatment plants, boating, livestock farming, and industrial parks.

MONITORING YOUR WATER

-**Active Level (AL):** the concentration of a contaminant which, if exceeded, triggers additional information and requirements to which a water system must follow.

-**Violative Contaminant Level (VIC):** the highest level of a contaminant that is allowed in drinking water. When MCLs are exceeded, it may result in an increased risk of certain types of cancer and other serious health effects.

-**Violative Contaminant Level Goal (VICG):** the level of a contaminant in drinking water below which there is no known or expected risk to health. VICGs allow for a margin of safety.

-**Violative Total Dissolved Solids Level (VTDSL):** the level of dissolved solids in drinking water below which there is no known or expected risk to health. VTDSLs do not reflect the benefits of the use of dissolved solids in controlled industrial environments.

SOURCES OF WATER

-In 2014, approximately 15% of the water that NPWA delivered to its customers was treated surface water from the Forest Park Water Treatment Plant, in Chalfont, Pennsylvania. At times throughout the year, water is pumped from the Delaware River at Point Pleasant and diverted into the Forest Park Water Treatment Plant, in Chalfont. The source of water that is treated at Forest Park Water is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Township. It flows through the borough of Sellersville, on-lot septic systems and gas stations. Non-point sources of pollution from auto repair shops, wastewater treatment plants, boating, livestock farming, and industrial parks.

-In 2014, approximately 15% of the water that NPWA delivered to its customers was treated surface water from the Forest Park Water Treatment Plant, in Chalfont, Pennsylvania. At times throughout the year, water is pumped from the Delaware River at Point Pleasant and diverted into the Forest Park Water Treatment Plant, in Chalfont. The source of water that is treated at Forest Park Water is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Township. It flows through the borough of Sellersville, on-lot septic systems and gas stations. Non-point sources of pollution from auto repair shops, wastewater treatment plants, boating, livestock farming, and industrial parks.

-In 2014, approximately 15% of the water that NPWA delivered to its customers was treated surface water from the Forest Park Water Treatment Plant, in Chalfont, Pennsylvania. At times throughout the year, water is pumped from the Delaware River at Point Pleasant and diverted into the Forest Park Water Treatment Plant, in Chalfont. The source of water that is treated at Forest Park Water is the North Branch Neshaminy Creek. The North Branch Neshaminy Creek originates as a small stream near Route 413 in Central Township. It flows through the borough of Sellersville, on-lot septic systems and gas stations. Non-point sources of pollution from auto repair shops, wastewater treatment plants, boating, livestock farming, and industrial parks.
CHEMICAL CONTAMINANTS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bromate</td>
<td>10</td>
<td>0</td>
<td>6.3</td>
<td>1.00 – 6.30 ppm</td>
<td>2016 No</td>
<td>Byproduct of drinking water disinfection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bromide</td>
<td>10</td>
<td>0</td>
<td>6.3</td>
<td>1.00 – 6.30 ppm</td>
<td>2015 No</td>
<td>Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Barium</td>
<td>2</td>
<td>2</td>
<td>0.448</td>
<td>0.200 – 0.448 ppm</td>
<td>2015 and 2016 No</td>
<td>Discharge of drilling wastes; Discharge of metal refineries; Erosion of natural deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chromium</td>
<td>100</td>
<td>100</td>
<td>3</td>
<td>0.3 – 3 ppm</td>
<td>2015 and 2016 No</td>
<td>Discharge from steel and pulp mills; Erosion of natural deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fluoride</td>
<td>2</td>
<td>2</td>
<td>0.124</td>
<td>0.00 – 0.124 ppm</td>
<td>2015 and 2016 No</td>
<td>Erosion of natural deposits; Discharge from fertilizer and aluminum factories</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antimony</td>
<td>6</td>
<td>6</td>
<td>0.7</td>
<td>0.07 ppm</td>
<td>2015 and 2016 No</td>
<td>Discharge from petroleum refineries; for fertilizers, ceramics, electronics, solder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nitrate</td>
<td>10</td>
<td>10</td>
<td>4.34</td>
<td>0.259 – 4.34 ppm</td>
<td>2016 No</td>
<td>Runoff from fertilizer use, leaching from septic tanks, sewage; Erosion of natural deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetrachloroethylene</td>
<td>5</td>
<td>0</td>
<td>0.830</td>
<td>0 – 0.830 ppm</td>
<td>2016 No</td>
<td>Discharge from factories and dry cleaners</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Haloacetic Acid (HAA)</td>
<td>60</td>
<td>N/A</td>
<td>7.80</td>
<td>2.49 – 14.11 ppm</td>
<td>2016 No</td>
<td>Byproduct of drinking water disinfection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total Trihalomethanes (TTHM)</td>
<td>80</td>
<td>N/A</td>
<td>28.5*</td>
<td>6.93 – 50.4 ppm</td>
<td>2016 No</td>
<td>Byproduct of drinking water disinfection</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alpha Emitters</td>
<td>15</td>
<td>0</td>
<td>4.37</td>
<td>0 – 4.37 µg/L</td>
<td>2014 and 2016 Yes</td>
<td>Erosion of natural deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Combined Radium</td>
<td>5</td>
<td>0</td>
<td>1.12</td>
<td>0 – 1.12 µg/L</td>
<td>2014 and 2016 Yes</td>
<td>Erosion of natural deposits</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Uranium</td>
<td>30</td>
<td>0</td>
<td>4.84</td>
<td>0 – 4.84 µg/L</td>
<td>2014 and 2016 Yes</td>
<td>Erosion of natural deposits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Since compliance is based on a running annual average, this value represents the highest running annual average result.

ENTRY POINT DISINFECTANT RESIDUAL

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chlorine – Wells</td>
<td>0.4</td>
<td>0*</td>
<td>0 – 1.39 ppm</td>
<td>2016 No</td>
<td>Water additive used to control microbes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chlorine – FWTP Treatment Plant</td>
<td>0.2</td>
<td>1.00</td>
<td>1.00 – 1.65 ppm</td>
<td>2016 No</td>
<td>Water additive used to control microbes</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Chlorine levels did not drop below the minimum residual level required for more than 4 hours.

TURBIDITY AT FOREST PARK WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turbidity</td>
<td>1 NTU</td>
<td>0.04</td>
<td>0.01 – 0.04 NTU</td>
<td>2016 No</td>
<td>Soil runoff</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Turbidity is a measure of the cloudiness of water. We monitor it because it is a good indicator of the effectiveness of our filtration system. As a member of the Partnership for Safe Drinking Water, our goal is to achieve <0.1 NTU. In 2016, we accomplished this. 100% of all samples were <0.1 NTU.

LEAD AND COPPER

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lead</td>
<td>15</td>
<td>1.9</td>
<td>0.04</td>
<td>0 – 0.04 ppm</td>
<td>2016 No</td>
<td>Corrosion of household plumbing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>1.3</td>
<td>0.95</td>
<td>0.01 – 0.04 ppm</td>
<td>2016 No</td>
<td>Corrosion of household plumbing</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

PERFLUOROCARBON COMPOUNDS (PFCs)

There are some contaminants for which the EPA develops health advisories, but has not yet established regulatory limits for compliance by public water suppliers. The health advisories provide technical information on health effects. Perfluorooctanic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are included in those contaminants that have no regulatory limit but are associated with a health advisory. Currently, PFOA and PFOS have a combined health advisory level (HAL) of 70 ppt. These chemicals are strong in a family of manmade chemicals that have been used for decades as an ingredient to make products that resist heat, oil, stains, grease and water, and are used in foam products for firefighting.

Due to recent health concerns in the region regarding PFOA and PFOS (PFCs), Forest Park Water Treatment Plant voluntarily elected to monitor water at the plant for PFCs. Testing of Well NP26 for PFOA and PFOS was done as a safety precaution as this well was not active during the federal Unregulated Contaminant Monitoring Rule (UCMR 3) testing done in 2015 in which all of the wells in NPWAT's main system were monitored for and reported.

FOREST PARK WATER TREATMENT PLANT

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
<td>0</td>
<td>0</td>
<td>0 – 0.22 ppm</td>
<td>2016 No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorooctane sulfonic acid (PFOS)</td>
<td>0.3</td>
<td>0</td>
<td>0 – 0.22 ppm</td>
<td>2016 No</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*PFOA + PFOS have a combined HAL (Health Advisory Level) of 70 ppt

WELL NP26 RESULTS

<table>
<thead>
<tr>
<th>Contaminant</th>
<th>MCL</th>
<th>MCLG</th>
<th>Highest Level Detected</th>
<th>Range of Detections</th>
<th>Units</th>
<th>Sample Date</th>
<th>Violation Yes/No</th>
<th>Source of Contamination</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perfluorooctanoic acid (PFOA)</td>
<td>0</td>
<td>0</td>
<td>0 – 0.22 ppm</td>
<td>Aug 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Perfluorooctane sulfonic acid (PFOS)</td>
<td>0.3</td>
<td>0</td>
<td>0 – 0.22 ppm</td>
<td>Aug 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PFOA + PFOS</td>
<td>3.0</td>
<td>0</td>
<td>0 – 0.22 ppm</td>
<td>Aug 2016</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

*PFOA + PFOS have a combined HAL (Health Advisory Level) of 70 ppt